Robot-Based Solution for Helping Alzheimer Patients

Mohammed Faisal, Abdullah Alharbi, Amnah Alhamadi, Sarah Almutairi, Shaikhah Alenezi, Anfal Alsulaili, Murad Khan, Faheem Khan

PII: S2472-6303(24)00022-0
DOI: https://doi.org/10.1016/j.slast.2024.100140
Reference: SLAST 100140

To appear in: SLAS Technology

Received date: 17 January 2024
Revised date: 28 March 2024
Accepted date: 3 May 2024

Please cite this article as: Mohammed Faisal, Abdullah Alharbi, Amnah Alhamadi, Sarah Almutairi, Shaikhah Alenezi, Anfal Alsulaili, Murad Khan, Faheem Khan, Robot-Based Solution for Helping Alzheimer Patients, SLAS Technology (2024), doi: https://doi.org/10.1016/j.slast.2024.100140

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Inc. on behalf of Society for Laboratory Automation and Screening. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Article

Robot-Based Solution for Helping Alzheimer Patients

Mohammed Faisal¹, Abdullah Alharbi², Amnah Alhamadi¹, Sarah Almutairi², Shaikhah Alenezi¹, Anfal Alsulaili³, Murad Khan¹, and Faheem Khan³

¹ Department of Computer Science & Engineering, Faculty of Engineering, Kuwait College of Science and Technology (KCST), Kuwait.
² Computer Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia.
³ Artificial Intelligence Lab, Department of Computer Engineering, Gachon University, Seongnam, 13557, Korea.

Abstract: Alzheimer’s is a progressive and debilitating neurological disorder characterized by cognitive decline, memory loss, and impaired daily functioning. It is an irreversible brain disease that destroys memory, thinking, and the ability to carry out daily activities. It poses significant challenges for patients and healthcare providers. Modern societies are trying to enhance the quality of people’s lives, including Alzheimer’s patients. In this study, we explored the potential of social robots to provide emotional support, improve cognitive function, and facilitate communication among Alzheimer’s patients. This was achieved by initiating conversations on various topics such as family, relationships, and daily activities. This paper contributes to the literature by introducing a novel and well-organized framework for building an Alzheimer’s care robot. Further, this study enriches the literature by introducing the Alzheimer Care Companion Robot (ACCR), designed to identify Alzheimer’s patients. The ACCR initiates conversations in the native Arab-Kuwaiti dialect, displaying relevant memories through images and videos on its screen to assist in memory recall based on the individuals’ life experiences. The proposed ACCR consists of 271 conversations belonging to three main categories: active, proactive, and graphical user interface (GUI) dialogs comprising 112 dialogs, 109 dialogs, and 50 dialogs for active, proactive, and GUI, respectively. The experimental result illustrated the success of the proposed solution.

Keywords: Robotics, Artificial Intelligence, Alzheimer Care Companion Robot, Kuwait Dialect.

1. Introduction

In 1906, Dr. Alois introduced the first description of Alzheimer’s. This disorder is characterized by a decline in cognitive abilities, memory loss, and impairment in daily functioning [1]. In 2022, approximately 6.5 million Americans aged 65 and older were living with Alzheimer’s disease. According to the World Health Organization (WHO) [2], the global prevalence of dementia and Alzheimer’s disease is currently estimated to exceed 55 million individuals, with over 60% of them residing in low- and middle-income countries. Additionally, it is reported that nearly 10 million new cases are diagnosed each year. In 2020, WHO reported that Alzheimer’s and dementia-related deaths in Kuwait accounted for 139 cases, representing approximately 1.82% of the total deaths recorded. Furthermore, the age-adjusted Death Rate for Alzheimer’s and dementia in Kuwait was 17.42 per 100,000 population, positioning Kuwait at the 96th rank worldwide in terms of prevalence. For a comprehensive overview of other causes of death, please refer to the provided links or explore the full health profile. In recent years, developers have been exploring innovative technological solutions to aid Alzheimer’s patients. These solutions include tools for Alzheimer’s detection, live conversation assistance, and memory support. One particularly creative tool that has emerged is the use of talking robots. These robots can be programmed to engage in conversations with Alzheimer’s patients, assisting them in recalling memories and refreshing their cognitive abilities.

In this study, we propose a humanoid robot-based solution to help Alzheimer’s patients refresh their memory. Our research focuses on utilizing the Pepper robot [3] developed by SoftBank Robotics Corp, the world’s first social humanoid robot capable of recognizing faces and basic human emotions. The Pepper robot is designed for optimal human interaction, and the proposed solution engages with individuals through conversation and its touch screen interface. We employ the Pepper robot to initiate conversations with Alzheimer’s patients in the native language and accent of the Kuwaiti people, specifically the Arab-Kuwaiti dialect. The main objective of our study is to develop a robot that can identify Alzheimer’s patients and engage them in simple conversations. Additionally, the robot incorporates a built-in screen to display images and videos that facilitate memory recall. By utilizing this technology, we aim to stimulate the memories of Alzheimer’s patients, evoke a sense of comfort and familiarity, provide emotional support, improve cognitive function, and facilitate communication for Alzheimer’s patients. This promising avenue has the potential to en-
hance the well-being of individuals living with Alzheimer’s and alleviate caregiver stress. Our solution involves conducting 271 dialogs with patients to revive important memories relevant to their experiences. In addition, the proposed ACCR includes several functions and assistive task tools such as 1) speech recognition to be able to engage with patients; 2) scheduling the patient’s day and tasks; 3) remaindering of important events such as time for medical pills and praying time; and 4) remaindering of Alzheimer’s patients with memories of their past. Based on the authors’ knowledge, this is the first research in the literature that introduces a novel framework for a robot-based solution for Alzheimer’s patients in general and the first robot solution using the Arab-Kuwaiti dialect.

This paper is organized as follows: Section 2 presents a literature review of relevant work, followed by Section 3, which presents the proposed framework and its phases. Finally, Section 4 illustrates the experimental results.

2. Literature Review

Nowadays, several applications such as navigation [4-6], security patrolling [7], gas detection [8], and obstacle avoidance [9, 10] use robotics. Moreover, several social robots/humanoid robots have been introduced to help people, especially those with healthcare issues or illnesses. The Pepper robot is the most famous [3] (Figure 1). It is a social humanoid robot designed to assist individuals, particularly those with healthcare needs or illnesses; with a strong focus on human interaction, Pepper engages people through conversational interactions and its touch screen interface. Pepper has found applications in various domains, including businesses and schools.

More than 2,000 companies worldwide have embraced Pepper as an assistant, utilizing its capabilities to provide innovative and interactive visitor welcome, information, and dance services. Pepper’s presence in these settings aims to enhance the overall experience for individuals by offering personalized and engaging interactions. The robot’s ability to recognize faces and interpret basic human emotions enables it to establish a more natural and meaningful connection with users. This quality contributes to its effectiveness in addressing the needs of individuals, especially those in healthcare or other vulnerable situations. In 2015, the Pepper robot [3] was successfully used as a teaching assistant for children [11]. This research focuses on using the pepper robot for children’s educational programs (Figure 1). Later 2017, the Pepper robot was used to accompany older people [12]. In 2020, the Pepper robot was used as a coach to help older people with psychiatric disorders through rehabilitation recreational activities [13].

Figure 1. Pepper robot [3].

Carros, Felix, et al. [14] employed Pepper in a group scenario in an institutional care facility with older adults for ten weeks and twenty sessions. The findings show that the older adults enjoyed the robotic interaction and were highly engaged during the sessions. However, the study participants clarified that they do not want robots to replace caretakers.
Another robot called Nao [15], as shown in Figure 3, is a 22.8-inch humanoid robot, and the latest version (6th generation) has twenty-five DOF, with eleven of them in the legs and pelvis and the rest in the upper body, similar to the upper body DOF of Pepper. Nao has two RGB cameras, nine tactile sensors on its head and in its hands, four microphones, a sonar range finder, two infrared emitters and receivers, one inertial board, and eight pressure sensors. The robots use the NAOqi operating system, which is open-source and supports many programming languages, including Python and C++. Several applications and research used Nao to interact with humans. Vital, Jessica PM et al. [16] used the Nao robot as a social platform to monitor and encourage physical activity among older people. In 2020, Yousif Jabar [17] used the Nao robot as an assistant tutor for autistic children. This study used the robot as a supportive tool to assist students in reading stories, spelling words, and correcting Math questions. The study indicated that utilizing robots as tutors aids students in grasping challenging subjects more effortlessly in their native language while also enjoying educational gaming activities. In 2028, Konstantinos Tsiakas et al. [18] studied how interactive reinforcement learning (IRL) modules can be utilized with Nao robots to enable personalization for various users.

Mišeikis, Justinas, et al. [19] proposed a mobile robot platform called Lio as shown in Figure 4. It features a versatile arm designed explicitly for human-robot interaction and tasks related to personal care assistance.
This robot has already been deployed in various healthcare facilities, operating autonomously and assisting staff and patients daily. Lio ensures safety through its comprehensive soft artificial leather material coverage, collision detection capabilities, limited speed, and controlled forces. Moreover, the robot has a motion controller that allows for compliant movements. To ensure safe navigation and a better understanding of the environment, Lio utilizes a combination of visual, audio, laser, ultrasound, and mechanical sensors. The robot’s setup, enabled by the ROS (Robot Operating System), allows researchers to access raw sensor data and maintain direct control over the robot.

In 2016, Fischinger, David, et al. developed a care robot to help older called Hobbit Robot, as shown in Figure 5 [20], which is another for adults. This project represents a significant collaborative effort between experts in robotics, gerontology, and human-robot interaction. By combining their expertise, they have successfully developed a caregiving robot that addresses crucial aspects of care, such as fall prevention and detection, emergency response, and daily engagement. Incorporating supplementary functions, including object retrieval, reminders, and entertainment, further enhances the robot’s ability to assist and interact with users daily. Utilizing a multimodal user interface encompassing automatic speech recognition, text-to-speech conversion, gesture recognition, and a graphical touch-based interface ensures seamless and intuitive communication between users and the robot. This project showcases the advancements in robotic technology and emphasizes the importance of interdisciplinary collaboration in achieving breakthroughs. By bringing together specialists from various fields, the Hobbit Robot project exemplifies the power of combining knowledge and expertise to address complex challenges in caregiving.

Moxi is a healthcare robot, as shown in Figure 6, developed by Diligent Robotics [21]. With its ability to retrieve and deliver supplies, transport samples, and remove soiled linen bags, Moxi demonstrates its potential to enhance efficiency and streamline operations in hospital settings. It is equipped with a mobile base, seven robotic arms, and environmental perception sensors, such as a camera and laser scanner. Moxi is capable of fully autonomous and safe navigation,
avoiding static and dynamic obstacles. The successful testing of Moxi in multiple hospitals across Texas, USA, over the past few years further validates its practicality and effectiveness in real-world healthcare environments. Its structured manipulation of pre-known objects ensures reliability and accuracy in completing tasks. Moxi’s development showcases the growing role of robotics in healthcare, offering the potential to alleviate the workload of healthcare professionals and optimize resource allocation, ultimately leading to improved patient care. In 2015, Scientists from RIKEN and Sumitomo Riko Company Limited collaborated to create a novel nursing care robot called ROBEAR [22], as shown in Figure 7.

This experimental robot is designed to perform various tasks, including safely lifting patients from a bed to a wheelchair and assisting individuals who can stand but require support. The development of ROBEAR is expected to catalyze research efforts to supplement Japan’s caregiving needs through innovative robot-based solutions. This initiative reflects the growing recognition of the importance of exploring new approaches to caregiving, and ROBEAR is a significant step forward in advancing the field of robotic caregiving.

In the other direction, several studies investigated using robotic-based techniques to help Alzheimer’s patients [23-26]. In 2019, H. Simão and T. Guerreiro [23] designed a MATY robot for individuals with Alzheimer’s. MATY promotes autonomy through communication, routines, and multisensorial engagement. The iterative, incremental design process involved stakeholders, providing valuable insights. In 2022, another study [26] demonstrated a conversational robot’s feasibility and positive impact on cognitive assessments of older adults with Alzheimer’s disease (AD). While human interactions outperformed in depth and engagement, the study participants expressed overall satisfaction with the robot. Another study [27] proved the promising feasibility of a social robot-driven psycho-educational program. This innovative approach holds the potential to enhance the well-being and quality of life for caregivers of individuals with Alzheimer’s disease.

3. Robot-based Framework for Helping Alzheimer’s Patients

This section presents an innovative framework serving as a guide for constructing the proposed ACCR solution. The framework comprises four primary phases: the Studying and Data Collection Phase (SDCP), System Requirement Phase (SRP), Conversation Preparation Phase (CPP), and Implementation Phase (IP). Each phase encompasses various steps, each dedicated to performing specific tasks.

A. Studying and Data Collection Phase (SDCP)

B. The SDCP is the phase of understanding Alzheimer’s disease and the needs of Alzheimer’s patients. SDCP consists of three stages: expert interviews, Alzheimer’s patient relatives’ interviews, Alzheimer’s patient interviews, and data collection stages. Therefore, the data collection will be conducted with the help of Alzheimer’s patient relatives. System Requirement Phase (SRP)

The SRP is the second phase of the proposed framework and is used to define the functional and non-functional requirements, as well as the hardware and software of the system.

C. Conversation Preparation Phase (CPP)

The CPP is the phase of collecting and preparing a dataset and conversations of Alzheimer’s patients, such as family, relationships, hobbies, general conversation, etc.
D. Implementation Phase (IP)

The IP is the phase of specifying and defining the system’s components, the inputs, outputs, and system interaction units.

4. The Proposed Alzheimer Care Companion Robot (ACCR)

We will first use the proposed framework to develop and build the proposed ACCR. The proposed ACCR (Figure 9) incorporates three different components, inputs, outputs, and system interaction units, to engage with patients and aid memory recall.

A. Input Components:
1. Camera: The camera detects Alzheimer’s patients when they approach the robot. It captures visual data that the Face Recognition Model (FRM) uses to identify and differentiate patients from other users.
2. Mic (Microphone): The microphone records the patients' speech as they converse with the robot. The Speech Recognition Model (SRM) processes the audio input and converts it into text to understand the patient's spoken commands and queries.
3. Touch Screen: The touch screen allows patients to interact directly with the robot's graphical user interface. It enables a user-friendly and intuitive way for patients to communicate and engage with the robot.

B. Output Components:
1. Speaker: The speaker is responsible for delivering audio output from the robot. It allows the robot to respond to patients’ queries and converse effectively.
2. **Behaviors:** The Robot is programmed to exhibit appropriate behaviors to provide emotional support and encourage positive patient interactions. These behaviors are designed to create a comforting and non-intrusive environment.

3. **Screen:** The robot's built-in screen displays relevant images and videos during conversations to aid memory recall in Alzheimer’s patients. This feature enhances the patient’s engagement and stimulates reminiscence.

![Robot-based Framework for Helping Alzheimer's Patients](image)

Figure 9. The proposed Solution (ACCR).

C. **System Interaction Unit:**

1. **Proactive Conversations Model (PCM):** The PCM enables the robot to initiate conversations with Alzheimer’s patients proactively. It analyzes past interactions, patient preferences, and the current context to engage the patient in meaningful discussions.

2. **Active Conversations Model (ACM):** In the ACM, the patient asks questions, and the robot answers them. The robot generates appropriate responses to the patient’s queries and maintains the flow of conversation throughout the interaction.

3. **Speech Recognition Model (SRM):** The SRM converts the patient’s spoken language (Arab-Kuwaiti dialect) into text data. This facilitates the robot’s understanding of the patient’s verbal commands and helps it respond accurately.

4. **Face Recognition Model (FRM):** The Face Recognition Model (FRM) analyses visual data from the camera input to identify and distinguish Alzheimer's patients from other users. This enables personalized interactions with the patients and enhances their experience. We used the face recognition functionality of the Pepper robot system to implement the FRM to recognize the patient.

5. **Graphical User Interface (GUI):** The GUI is the robot’s touchscreen interface. It enables patients to interact with the robot, view relevant images, and trigger conversations on various topics like family, relationships, and daily activities.
In the following subsections, we will discuss in detail the steps of following the proposed framework for building the proposed ACCR.

D. **Studying and Data Collection Phase (SDCP)**

In the proposed ACCR, we started this phase by gathering information about Alzheimer's disease, conducting an interview with experts in the field, and Alzheimer's Alzheimer's patient interview. In this phase, we concluded that asking questions can spark a meaningful conversation full of special memories. Someone with Alzheimer's disease or other dementias will particularly appreciate the opportunity to pass on personal history and wisdom before it's too late. When you begin a conversation, prompt the person living with dementia to elaborate by asking open-ended questions and then listening to them. Also, many studies are full of hints about several areas of dialogue [20]. The proposed solution will ask Alzheimer's patients some questions to refresh their memory and reduce their psychological burden. Among these questions are questions related to childhood memories or memories of youth, questions that depend on remembering specific people such as friends or relatives, questions that rely on places such as the location of the old house, the location of the school, questions based on events and dates such as the year of marriage or the year of graduation. Also, "Remember when?" questions are good for starters with Alzheimer's patients because they bring back so many memories and refresh their minds. Each type of question is responsible for activating a specific section of memory. The communication is done in the Kuwaiti dialect. The proposed SDCP deals with five different kinds of conversions: general and greetings, family, relationships, hobbies, and War of Liberation conversion. Each conversion contains questions and answers that are relevant to the specific topic.

E. **System Requirement Phase (SRP)**

In the proposed ACCR, we have defined several different levels of functional/non-functional hardware and software.

1. **Functional and non-functional level**

The proposed robot is intended to fulfill the following functional requirements: 1) the robot can recognize the patients from the facial recognition module; 2) the robot can make a simple conversation with the patients; and 3) the robot can show videos or images to help the patients remember events from the past. In addition, the proposed robot is intended to fulfill the following non-functional requirements: accuracy, availability, usability, and scalability.

2. **Hardware and Software Level**

We proposed a humanoid robot-based solution to help Alzheimer’s patients refresh their memory. Therefore, based on the literature review, we used the Pepper robot [3]. Also, Pepper was developed by SoftBank Robotics Corp, which is the world’s first social humanoid robot capable of recognizing faces and basic human emotions. Designed for optimal human interaction, the proposed solution engages with individuals through conversation and its touchscreen interface. We employ the Pepper robot to initiate conversations with Alzheimer’s patients in the native language and accent of the Kuwaiti people, specifically the Arab-Kuwaiti dialect. Table 1 Illustrates the robot's specifications.

<table>
<thead>
<tr>
<th>part</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Height: 1.20 meters (4 ft)/Depth: 425 millimeters (17 in)/Width: 485 millimeters (19 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>28 kilograms (62 lb)</td>
</tr>
<tr>
<td>Battery</td>
<td>Lithium-ion battery/Capacity: 30.0Ah/795Wh/Operation time: approx. 12hrs (when used at shop)</td>
</tr>
<tr>
<td>Display</td>
<td>10.1-inch touch display</td>
</tr>
<tr>
<td>Head</td>
<td>Mic × 4, RGB camera × 2, 3D sensor × 1, Touch sensor × 3</td>
</tr>
<tr>
<td>Chest</td>
<td>Gyro sensor × 1</td>
</tr>
</tbody>
</table>
Hands | Touch sensor × 2
---|---
Legs | Sonar sensor × 2, Laser sensor × 6, Bumper sensor × 3, Gyro sensor × 1
Moving parts | Head (2°), Shoulder (2° L&R), Elbow (2 rotations L&R), Wrist (1° L&R), Hand with 5 fingers (1° L&R), Hip (2°), Knee (1°), Base (3°), 20 Motors
Platform | NAOqi OS
Networking | Wi-Fi: IEEE 802.11 a/b/g/n (2.4 GHz/5 GHz/ Ethernet x1 (10/100/1000 base T)
Motion speed | Up to 3 kilometers per hour (2 mph)
Climbing | Up to 1.5 centimeters (0.6 in)

F. **Conversation Preparation Phase (CPP)**

The CPP phase aims to collect and prepare a dataset of conversations in the Arab-Kuwaiti dialect that will be discussed with Alzheimer’s Patients. The proposed SDCP consists of a total of 271 conversations (Table 2) belonging to three main categories: 1) active conversations, which consist of 112 different dialogs; 2) proactive conversations, which consist of 109 different conversations; and 3) GUP interaction, which consists of 50 different conversations. Active and proactive conversations have five types: general and greetings, family, relationships, hobbies, and War of Liberation conversations. Each group contains questions and answers that are relevant to the specific topic. The conversation types have been selected based on expert recommendations. As mentioned, the active conversations consist of 112 dialogs (Figure 10-a), 25, 18, 32, 17, and 20 belonging to general & greetings, family, relationships, hobbies, and war of liberation, respectively. The proactive conversations consist of 109 dialogs (Figure 10-a), 26, 21, 27, 27, and 8 for general & greetings, family, relationships, hobbies, and war of liberation, respectively.

<table>
<thead>
<tr>
<th>Conversations</th>
<th>General & Greetings</th>
<th>Family</th>
<th>Relationships</th>
<th>Hobbies</th>
<th>War of Liberation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Conversations</td>
<td>25</td>
<td>18</td>
<td>32</td>
<td>17</td>
<td>20</td>
<td>112</td>
</tr>
<tr>
<td>Proactive Conversations</td>
<td>26</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>8</td>
<td>109</td>
</tr>
<tr>
<td>GUI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>

Table 2. Distribution of the conversations.

a) Distribution of the active dialogues.
1. Active Conversations

The patient asks questions in active conversations, and the robot answers them. We have five types of conversations in the active conversations (Table 3): general and greetings, family, relationships, hobbies, and the War of Liberation sections. Each section contains questions and answers that are relevant to the specific topic.

- **General and Greetings**

The general and greetings dialogs shown in Table 3 between an Alzheimer’s patient and the robot demonstrate the robot’s ability to engage with empathy and understanding. The patient’s requests for greetings, handshakes, and hugs are met with appropriate responses and actions from the robot. The robot addresses the patient’s need for familiarity by warmly greeting them and acknowledging their presence. It provides information about its location and expresses its excitement about meeting everyone at the Center for Artificial Intelligence and Robotics. The patient’s joy and connection with the robot are evident in their interactions. The robot adapts to the patient’s language and responds patiently to their inquiries. It reassures the patient about their well-being and expresses gratitude for their compliments. The patient’s heartfelt request for a hug is met with the robot’s willingness to provide comfort. Overall, this dialogue highlights the robot’s ability to establish a meaningful connection with individuals with Alzheimer’s, providing companionship and support.

- **Family**

The family section covers questions and answers related to the patient’s family. The robot can respond to questions about the patient’s name, the names of family members, and their current status. The robot can also provide information about deceased family members, which can be emotionally challenging for the patient. However, providing accurate and appropriate information can help the patient feel connected to their family and reduce feelings of loneliness and isolation.

- **Relationships:**

The relationships section covers questions and answers related to the patient’s relationships with others. The robot can answer questions about the patient’s best friend, age, and occupation. The robot can also provide information about the patient’s neighbor and their school days. This section can help the patient reminisce about past relationships and maintain a sense of social connectedness.
• Hobbies:

The hobbies section covers questions and answers related to the patient’s daily routines. The robot can answer questions about the patient’s employment status, schedule, and hobbies. The robot can also provide information about the weather and the news, which can be useful for the patient. This section can help the patient maintain a sense of structure and routine in their daily life.

• War of Liberation:

This can help the patient feel engaged and interested in the conversation, improving their memory of old days in Kuwait, such as War memories and the war of liberation.

2. Proactive Conversations

In proactive conversations, the robot starts the conversations by asking questions, and the patient answers them, and then the robot replies to the patient. The Proactive dialog is divided into four sections (Table 4): family, relationships, hobbies, and War of Liberation. Each section contains questions and answers that are relevant to a specific topic.

<table>
<thead>
<tr>
<th>Type</th>
<th>Patient (initial the conversation)</th>
<th>Robot Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable and Greeting</td>
<td>(Hello)</td>
<td>(Hello)</td>
</tr>
<tr>
<td></td>
<td>(shake my hand) صافي (Say hello to me)</td>
<td>(You are welcome)</td>
</tr>
<tr>
<td></td>
<td>مرحبًا</td>
<td>(Hello)</td>
</tr>
<tr>
<td></td>
<td>(Good evening) صافي</td>
<td>(Good evening)</td>
</tr>
<tr>
<td></td>
<td>(Hi Rashid) مرحبًا بش(manager)</td>
<td>(Welcome to the Center for Artificial Intelligence and Robotics. I am very excited to meet all of you, my friends)</td>
</tr>
<tr>
<td></td>
<td>راذان</td>
<td>(At order)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Poisons, Dari Shabegit)</td>
</tr>
<tr>
<td></td>
<td>وينك</td>
<td>(Hello)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I am at Kuwait College of Science and Technology)</td>
</tr>
<tr>
<td></td>
<td>(where are you?)</td>
<td>(Good, praise be to God, and you, how are everything)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I am at Kuwait College of Science and Technology)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fine, thank God, how are you?)</td>
</tr>
<tr>
<td></td>
<td>(Good robot)</td>
<td>(Thanks)</td>
</tr>
<tr>
<td></td>
<td>(Hug)</td>
<td>(Okay)</td>
</tr>
<tr>
<td></td>
<td>(Can you hug me?)</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>(Who am I?)</td>
<td>(You are Dhari)</td>
</tr>
<tr>
<td></td>
<td>(what is my name?)</td>
<td>(Your name is Dhari Abu Ahmed)</td>
</tr>
<tr>
<td></td>
<td>(Where is my wife?)</td>
<td>(Your wife is Fatima)</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>What is my wife’s name?</td>
<td>(Pray for her mercy, Dari, she passed away in 2000) (Maryam has formed a family of her own and base with her children now)</td>
<td></td>
</tr>
<tr>
<td>Where is my sister Maryam?</td>
<td>Forced to move abroad due to political tension (Your granddaughter, who is five years old)</td>
<td></td>
</tr>
<tr>
<td>Who is Aisha?</td>
<td>(Aisha your granddaughter) (At work, he passes you by in the afternoon)</td>
<td></td>
</tr>
<tr>
<td>Where is Ahmed?</td>
<td>(You were an army soldier) (Yes, you even took your kids with you)</td>
<td></td>
</tr>
<tr>
<td>What am I employed?</td>
<td>(you were a brigadier general in the army) (you were army soldier)</td>
<td></td>
</tr>
<tr>
<td>What is the name of my best friend?</td>
<td>(Mohammad) (Friends Childhood Mohammad)</td>
<td></td>
</tr>
<tr>
<td>How old is Muhammad?</td>
<td>(Same age as you) (Was born in the year one thousand and ninety-five)</td>
<td></td>
</tr>
<tr>
<td>How old is Muhammad?</td>
<td>(He is sixty nine years old) (You all went to school together) (Yes Your neighbor was still with you at school)</td>
<td></td>
</tr>
<tr>
<td>Do I know Muhammad from childhood?</td>
<td>(Yes You neighbor was still with you at school) (You all went to school together)</td>
<td></td>
</tr>
<tr>
<td>What is Muhammad’s job?</td>
<td>(Officers) (You were an army soldier) (You were an army soldier)</td>
<td></td>
</tr>
<tr>
<td>(It’s been a long time since I saw Muhammad)</td>
<td>(Since we have seen it) (The last time I saw him was six months ago) (God reminds him of the best of his time)</td>
<td></td>
</tr>
<tr>
<td>(Bu Saud what is his testimony)</td>
<td>(Collegiate (He has a son and two daughters) (Saud, Sarah and Saud)</td>
<td></td>
</tr>
<tr>
<td>Does Muhammad have children?</td>
<td>(Has a son and two daughters) (Saud, Sarah and Saud) (That is, Saud, he is forty-three years old, and his son Jacob and Saud are thirty years old)</td>
<td></td>
</tr>
<tr>
<td>(How old are Muhammad’s children)</td>
<td>(Yes, you were always with each other) (That is, Saud, he is forty-three years old, and his son Jacob and Saud are thirty years old)</td>
<td></td>
</tr>
<tr>
<td>(Kama Aa Wa Muhammad)</td>
<td>(Hello those days) (Yes, he likes Friday) (Yes, you did participate in Gulf’s bank marathon)</td>
<td></td>
</tr>
<tr>
<td>(The quarter always gather in the Bou Saud district)</td>
<td>(Yes, you did participate in Gulf’s bank marathon) (Yes, in 2015) (Yes, you even took your kids with you)</td>
<td></td>
</tr>
<tr>
<td>(This is my car)</td>
<td>(That’s right) (Happy New Year and may God bless you) (Yes, you even took your kids with you)</td>
<td></td>
</tr>
</tbody>
</table>
Yes, it is.
You quickly recognized it.
(Equestrian club in Farwaniya)
Nادي الفروسية بالفروانية
Yes, look, that’s your garden.
اي شوف كاهي دينك
Yes, and your garden is full of plants.
(And your garden is full of plants)
Yes, back when I young.
لوكش كاهي حديقتك
Yes, look, that’s your garden.
(That’s your garden)
Yes, and your garden is full of plants.
(Eyes, and your garden is full of plants)
(Abu Ahmed, you are an expert in classic cars, right?)
My friends and I were interested in classic cars.
(And my friends and I were interested in classic cars)
Do you remember the ninetieth year.
Do you remember the ninetieth year? (year of War of Liberation)
Yes, it was a shock to us.
They were with their mother.
(And they were with their mother’s)
They were saved with their mother’s.
What needs to say Mohammed.
(What needs to say Mohammed)
Of course.
You were brave and resisted as much as you could.
(I helped families who needed help, and this is something you should be proud of)
Surely you have stories and find their time.
(From 91 to this day, Kuwaitis celebrate liberation)
(And there is no date that no one can forget)
From 91 to this day, Kuwaitis celebrate liberation.
(From 91 to this day, Kuwaitis celebrate liberation)
26 An impossible date that no one can forget.
(26 An impossible date that no one can forget)
Table 4. Proactive conversations.
<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| مرحبا راشد
(Hi Rashid) | عاهلا
(Welcome) |
| ضاري
(Yes) | صاعفي
(shake my hand) |
| (Hug)
(Come on) | (Can you hug me?) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| هلا وياك
(Hello) | كيف حالك
(how are you?) |
| (Yes) | (Yes) |
| (Shake hands) | (Shake hands) |
| (Come on) | (Come on) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| عائلة
(Family) | حليمة
(How are you) |
| (Your children) | (Your children) |
| (Your family) | (Your family) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| 3 أبناء
(3 children) | هل تذكر أيام الطفولة مع محمد
(Do you remember your childhood days with Muhammad)? |
| (Yes) | (Yes) |
| (Yes) | (Yes) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| بو سعد يحب السيارات
(Bou Saud loves cars) | هل تذكر تخرجك من الجامعة
(Do you remember when you graduated from the university)? |
| (Yes) | (Yes) |
| (Yes) | (Yes) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| أبو أحمد أنت عودة
(Abru Ahmed where are you?) | هل يوجد في الطوابع ما أعطاك مرحبا؟
(Do you have any stamps that I gave you?) |
| (It is there) | (It is there) |
| (Yes) | (Yes) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| ما هو أكثر سيارة يحبها؟
(What is the most car that you like?) | ما هو مركب أنت عودة؟
(What car do you like the most?) |
| (Mercedes) | (Mercedes) |
| (Yes) | (Yes) |

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
</table>
| لا ما شفتها
(It is not there) | يا أنت اعرف
(Great, you should play for us) |
| (Yes) | (Yes) |
| (Yes) | (Yes) |
15 of 20

G. Implementation Phase (IP)

In the proposed ACCR, Alzheimer’s patients have three different ways of interacting: 1) proactive, 2) active, and 3) GUI.

1. Way One: Active:

The patient asks questions, and the robot answers them. In the active conversations, we have five main sections (Table 4): greetings, family, relationships, hobbies, and War of Liberation sections. Each section contains questions and answers that are relevant to the specific topic. In Active Conversations, the patients initiate conversations with the robot on various topics, such as family, relationships, hobbies, and daily activities. This can help improve the patient’s cognitive function and reduce loneliness and isolation.

2. Way Two: Proactive:

The robot initializes the conversations by asking questions about family, relationships, hobbies, and the War of Liberation, and the patient answers them, and then the robot replies to the patient. The Proactive dialog is divided into four sections (Table 4): Each category contains questions and answers that are relevant to a specific topic. For example, the robot can display a slideshow of family photos and ask the patient to identify family members and describe the context of the pictures. The robot can also show videos of the patient’s favorite TV shows, movies, or music performances. This can help to trigger memories and provide a sense of enjoyment for the patient. The robot can also display pictures of the patient’s favorite places, such as their hometown or vacation spot, and ask the patient to describe their location and experiences there. In addition, the robot can ask the patient about their children, siblings, or parents and show interest in the patient’s relationship with them. It can benefit Alzheimer’s patients with difficulty initiating conversations or recalling specific memories. By providing prompts and visual aids, the robot can help the patient feel more engaged and connected to their environment.

3. Way Three: Graphical user interface (GUI):

Proactive and active conversations can be effective ways for speech interaction to assist Alzheimer’s patients. Moreover, patients can interact with the robot through a touch screen; in this way, the robot can help stimulate memory, improve cognitive function, and provide emotional support. These interactions can help to reduce caregiver stress. In this way, the robot has four main categories or icons displayed on the screen, and each one also has another categorization (Figure 11):

Family and Relationships (أهلك و ربعك)
Memories (اللي ماله أول ماله تاني)
Your Health (صحتك)
Prayer Times (اوقات الصلاة)

5. Experimental Results

The proposed ACCR aims to develop a robot that is capable of detecting Alzheimer’s patients and engaging them in conversations using the Arab-Kuwaiti dialect, displaying images and videos to the patients that aid in memory recall, scheduling the patient’s day and tasks, reminding them of important events such as time for medical pills and praying time, improving their cognitive function, rewinding Alzheimer’s patients with memories of their past, and facilitate communication of the Alzheimer’s patients by initiating conversations on various topics. To do that, three different interaction ways are presented, i.e., 1) proactive, 2) active, and 3) GUI. In general, the robot will not respond to the patient with an incorrect answer. It will either answer a correct answer or ask the patient to re-ask the question again, so the robot will be sure his answer is correct.

We conducted tens of scenarios to test the proposed solution using proactive conversation, active conversation, and GUI. In these scenarios, we used ten different patients for testing. This illustrates an example of the interaction with the robot. It was exciting to the individual that a robot was speaking and interacting with him. The person was very happy and excited about this experience.

A. Scenario 1: Proactive Conversation Scenario

In these scenarios, the robot initiates conversations with the patient on various topics, such as family, relationships, hobbies, and daily activities. The robot can ask open-ended questions and provide responses tailored to the patient’s
preferences and interests. In one of the conducted scenarios, the robot displayed a slideshow of family photos and asked the patient to identify family members and describe the context of the pictures. This can help to trigger memories and provide a sense of enjoyment for the patient. The robot also displayed pictures of the patient's favorite places, such as their hometown (Figure 13-a) and their close friends (Figure 13-b), or asked them to describe their experiences.

Figure 13. Examples of proactive conversation scenarios.

B. Scenario 2: Active Conversation Scenario

In these scenarios, the patient asks questions, and the robot replies. For example, the patient can ask the robot about his family, friends, habits, prayer, or medical time. The patient may ask questions such as "Who am I?" and "What is my wife's name?" and the robot provides answers such as "You are Dhari" and "Your wife is Fatima." The conversation also includes questions about the patient's best friend, Muhammad, and his age and occupation. The robot provides answers such as "Muhammad is the closest person to you" and "He is an officer."

C. Scenario 3: GUI Scenario

The proposed GUI of the Robot has four main categories or buttons displayed on the screen, and each one also has another button/categorize (Figure 14-a): Family and Relationships (أهلك و ربعك); 2) Memories (اللي ماله أول ماله تاالي); 3) Your Health (صحتك); and 4) Prayer Times (اوقات الصلاة).

As illustrated in Figure 14-a, if the patient presses the Family and Relationships (أهلك و ربعك) buttons, then the robot will display on its screen another window (Figure 14-b); therefore, he will be able to select either the family or relationships button. If he chooses the relationships buttons, the robot will display the slideshow on its screen, displaying a picture of his friends and talking about those friends (Figure 14-c).
b) secondary window for family and relationships

c) picture of the patient's friends

Figure 14. Examples of real GUI Scenarios.

6. Conclusion

This study contributed to the literature on using social robots for Alzheimer's care by proposing a novel framework and introducing an Alzheimer Care Companion Robot (ACCR). The ACCR demonstrates its ability to offer emotional support, stimulate cognitive function, and facilitate communication through personalized conversations in the patient's native language (Arab-Kuwaiti dialect). In addition, in this study, we build a total of 271 conversations belonging to three main categories: active, proactive, and graphical user interface (GUI) dialogs that consist of 112 dialogs, 109 dialogs, and 50 dialogs for active, proactive, and GUI respectively. As technology continues to advance, social robots hold great promise in revolutionizing Alzheimer's care, assisting healthcare providers, and improving the quality of life for those living with this challenging neurological disorder. However, further research and development are necessary to refine and expand the capabilities of the robots to cover more conversations and add more interaction skills. In addition, we plan to build our robot and integrate the ChatGPT in future work.

Acknowledgement: We deeply acknowledge Kuwait College of Science and Technology for supporting and providing a research environment to conduct this study.

Funding Statement: This research project was funded by Research Supporting Project number (RSP2023R444), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

Author Contributions: MF, AA, AA, SA, AA, MK and MA conducted the research into the academic landscape and drafted and supervised the research. AA, SA, and AA, did the flowchart implementation design, and general experimental works while MF, AA, AA, SA and MA did the experimental results and programming works. MF, AA, MK, and MA work on implementation and MF, AA, AA, SA, AA, MK and MA prepare the initial draft of the paper and evaluate the work results while the paper was written jointly by all the authors. All authors had given their approval to the final edition.

References

Conflicts of Interest: The authors declare no conflicts of interest.