Abstract
Keywords
Abbreviations:
CRC (Colorectal Cancer), c-HAP (hydroxyapatite nanoclusters), PDA (polydopamine), PDCCOs (patient-derived colon cancer organoids), NCs (nanocarriers), PDOs (patient-derived organoids), c-HAP/DOX (DOX-loaded hydroxyapatite nanoclusters)1. Introduction
- Zhang Q.
- Lu Q.B.
- He C.
- Ruan F.
- Jiang S.
- Zeng J.
- Yin H.
- Liu R.
- Zhang Y.
- Huang L.
- Wang C.
- Ma S.
- Zuo Z.
- Liu C.
- Qin T.
- Huang Y.
- Li Y.
- Chen G.
- Sun C.
N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M.E. Bragina, P. Ordóñez-Morán, H. Clevers, M.P.J.N. Lutolf, Designer matrices for intestinal stem cell and organoid culture, 539(2016) 560-564, doi:10.1038/nature20168.
L. Broutier, A. Andersson-Rolf, C.J. Hindley, S.F. Boj, H. Clevers, B.-K. Koo, M.J.N.p. Huch, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, 11(2016) 1724-1743, doi:10.1038/nprot.2016.097.
M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E.J. Wolvetang, M.S. Roost, S.M.J.N. Chuva de Sousa Lopes, Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, 526(2015) 564-568, doi:10.1038/nature15695.
W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. Van Boxtel, J. Wongvipat, C.M. Dowling, D. Gao, H. Begthel, N.J.C. Sachs, Identification of multipotent luminal progenitor cells in human prostate organoid cultures, 159(2014) 163-175, doi:10.1016/j.cell.2014.08.017.
A.J. Miller, B.R. Dye, D. Ferrer-Torres, D.R. Hill, A.W. Overeem, L.D. Shea, J.R.J.N.p. Spence, Generation of lung organoids from human pluripotent stem cells in vitro, 14(2019) 518-540, doi:10.1038/s41596-018-0104-8.
G. Rossi, A. Manfrin, M.P.J.N.R.G. Lutolf, Progress and potential in organoid research, 19(2018) 671-687, doi:10.1038/s41576-018-0051-9.
M.A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, J.A.J.N. Knoblich, Cerebral organoids model human brain development and microcephaly, 501(2013) 373-379, doi:10.1038/nature12517.
- Ermis E.
- Bagheri Z.
- Behroodi E.
- Latifi H.
- Rahimifard M.
- Ajorlou E.
- Davoudi Z.
- Peroutka-Bigus N.
- Bellaire B.
- Jergens A.
- Wannemuehler M.
- Wang Q.
- Khalifehzadeh R.
- Arami H.
- Cai A.Y.
- Zhu Y.J.
- Qi C.
Z.-S. Liu, S.-L. Tang, Z.-L.J.W.J.o.G. Ai, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells, 9(2003) 1968, doi:10.3748/wjg.v9.i9.1968.
- Wang Z.
- Zou Y.
- Li Y.
- Cheng Y.
- Wang N.
- Yu X.
- Kong Q.
- Li Z.
- Li P.
- Ren X.
- Peng B.
- Deng Z.J.C.
- Lei W.
- Sun C.
- Jiang T.
- Gao Y.
- Yang Y.
- Zhao Q.
- Wang S.
- Wang N.
- Yu X.
- Kong Q.
- Li Z.
- Li P.
- Ren X.
- Peng B.
- Deng Z.J.C.
K. Chen, K. Xie, Q. Long, L. Deng, Z. Fu, H. Xiao, L.J.R.A. Xie, Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility, 7(2017) 29368-29377, doi:10.1039/C7RA03494F.
2. Materials and methods
2.1 Preparation of c-HAP
2.2 Preparation of c-HAP/FITC
2.3 Drug loading and release
2.4 Characterization
2.5 Cell culture and cell viability assay
2.6 In vitro intracellular uptake assay
2.7 Apoptosis study by flow cytometry
2.8 Construction and culture of human colon cancer organoid model in vitro
2.9 Organoid viability assay
2.10 Organoid live/dead & cytoskeleton staining
3. Results and discussion
3.1 Preparation and characterization of c-HAP
- Wang Z.
- Zou Y.
- Li Y.
- Cheng Y.


- Wan W.
- Li Z.
- Wang X.
- Tian F.
- Yang J.
3.2 Drug loading and releasing of c-HAP
- Feng X.J.
- He X.
- Lai L.
- Lu Q.
- Wu J.
- Lv L.
- Cheng H.
- Wang Z.
- Miao Z.
- Zhang F.
- Chen J.
- Wang G.
- Tao L.
- Zhou J.
- Zhang H.J.N.

3.3 Cellular uptake and cytotoxicity

Y. Shaked, The pro-tumorigenic host response to cancer therapies, 19(2019) 667-685, doi:10.1038/s41568-019-0209-6.

3.4 Colon cancer organoid-based study


5. Conclusion
Author contributions
Declaration of interests
Acknowledgments
Appendix. Supplementary materials
References
- Cancer Statistics, 2021.CA Cancer J Clin. 2021; 71: 7-33https://doi.org/10.3322/caac.21654
- A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy.Nano Res. 2021; 15: 1205-1212https://doi.org/10.1007/s12274-021-3626-2
- Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine.Pediatr Hemat Oncol. 2005; 22: 441-445https://doi.org/10.1080/08880010590964381
- Nephrotoxic Chemotherapy Agents: Old and New.Adv Chronic Kidney D. 2020; 27: 38-49https://doi.org/10.1053/j.ackd.2019.08.005
- Management of nephrotoxicity of chemotherapy and targeted agents: 2020.Am J Cancer Res. 2020; 10: 4151-4164
- Anticancer drugs and cardiotoxicity: Insights and perspectives in the era of targeted therapy.Pharmacol Therapeut. 2010; 125: 196-218https://doi.org/10.1016/j.pharmthera.2009.10.002
- Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention.J Natl Cancer I. 2010; 102: 14-25https://doi.org/10.1093/jnci/djp44
- New combination chemotherapy of cisplatin with an electron-donating compound for treatment of multiple cancers.Sci Rep 11. 2021; 788https://doi.org/10.1038/s41598-020-80876-z
- Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells.Small. 2020; 16e2001371https://doi.org/10.1002/smll.202001371
- Drug screening model meets cancer organoid technology.Transl. Oncol. 2020; 13100840https://doi.org/10.1016/j.tranon.2020.100840
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459: 262-265https://doi.org/10.1038/nature07935
N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M.E. Bragina, P. Ordóñez-Morán, H. Clevers, M.P.J.N. Lutolf, Designer matrices for intestinal stem cell and organoid culture, 539(2016) 560-564, doi:10.1038/nature20168.
- A novel 3D liver organoid system for elucidation of hepatic glucose metabolism.Bioengineering. 2012; 109: 595-604https://doi.org/10.1002/bit.23349
L. Broutier, A. Andersson-Rolf, C.J. Hindley, S.F. Boj, H. Clevers, B.-K. Koo, M.J.N.p. Huch, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, 11(2016) 1724-1743, doi:10.1038/nprot.2016.097.
M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E.J. Wolvetang, M.S. Roost, S.M.J.N. Chuva de Sousa Lopes, Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, 526(2015) 564-568, doi:10.1038/nature15695.
W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. Van Boxtel, J. Wongvipat, C.M. Dowling, D. Gao, H. Begthel, N.J.C. Sachs, Identification of multipotent luminal progenitor cells in human prostate organoid cultures, 159(2014) 163-175, doi:10.1016/j.cell.2014.08.017.
A.J. Miller, B.R. Dye, D. Ferrer-Torres, D.R. Hill, A.W. Overeem, L.D. Shea, J.R.J.N.p. Spence, Generation of lung organoids from human pluripotent stem cells in vitro, 14(2019) 518-540, doi:10.1038/s41596-018-0104-8.
G. Rossi, A. Manfrin, M.P.J.N.R.G. Lutolf, Progress and potential in organoid research, 19(2018) 671-687, doi:10.1038/s41576-018-0051-9.
M.A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, J.A.J.N. Knoblich, Cerebral organoids model human brain development and microcephaly, 501(2013) 373-379, doi:10.1038/nature12517.
- Red emissive N-S co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device.J Sci-Adv Mater Dev. 2021; 7100404https://doi.org/10.1016/j.jsamd.2021.11.006
- Application of cancer organoid model for drug screening and personalized therapy.Cells. 2019; 8: 470https://doi.org/10.3390/cells8050470
- Gut organoid as a new platform to study alginate and chitosan mediated PLGA nanoparticles for drug delivery.Mar Drugs. 2021; 19https://doi.org/10.3390/md19050282
- Biodegradable calcium phosphate nanoparticles for cancer therapy.Adv Colloid Interface Sci. 2020; 279102157https://doi.org/10.1016/j.cis.2020.102157
- Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4.Theranostics. 2019; 9: 4525-4541https://doi.org/10.7150/thno.34676
- Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors.ACS Appl Mater Inter. 2018; 10: 7832-7840https://doi.org/10.1021/acsami.7b19281
- Biodegradable inorganic nanostructured biomaterials for drug delivery.Adv Mater Interfaces. 2020; 72000819https://doi.org/10.1002/admi.202000819
- Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo.ACS Appl Mater Inter. 2016; 8: 25680-25690https://doi.org/10.1021/acsami.6b06094
Z.-S. Liu, S.-L. Tang, Z.-L.J.W.J.o.G. Ai, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells, 9(2003) 1968, doi:10.3748/wjg.v9.i9.1968.
- Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics.Biomater Sci. 2019; 7: 3942-3960https://doi.org/10.1039/c9bm00831d
- Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics.Small. 2020; 161907042https://doi.org/10.1002/smll.201907042
- S.a. Physicochemical, E. Aspects, Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations.Colloid Surface A. 2020; 602125101https://doi.org/10.1016/j.colsurfa.2020.125101
- Nanoparticles modified by polydopamine: Working as "drug" carriers.Bioactive Mater. 2020; 5: 522-541https://doi.org/10.1016/j.bioactmat.2020.04.003
- Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy.Mater Sci Eng C Mater Biol Appl. 2019; 105110103https://doi.org/10.1016/j.msec.2019.110103
K. Chen, K. Xie, Q. Long, L. Deng, Z. Fu, H. Xiao, L.J.R.A. Xie, Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility, 7(2017) 29368-29377, doi:10.1039/C7RA03494F.
- Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods.Acta Biomaterialia. 2018; 77: 352-364https://doi.org/10.1016/j.actbio.2018.07.030
- Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity.J Am Chem Soc. 2018; 140: 2165-2178https://doi.org/10.1021/jacs.7b11036
- Polydopamine-based multifunctional (nano)materials for cancer therapy.ACS Appl Mater Inter. 2018; 10: 7541-7561https://doi.org/10.1021/acsami.7b08392
- Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater Sci Eng C. 2019; 98: 1252-1276https://doi.org/10.1016/j.msec.2019.01.066
- Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface.Carbohydr Polym. 2019; 212: 142-149https://doi.org/10.1016/j.carbpol.2019.02.018
- Surface-fabrication of fluorescent hydroxyapatite for cancer cell imaging and bio-printing applications.Biosensors (Basel). 2022; 12https://doi.org/10.3390/bios12060419
- Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation.Biomaterials. 2016; 81: 114-124https://doi.org/10.1016/j.biomaterials.2015.11.037
- Nanotechnology, Biomedical application of doxorubicin coated hydroxyapatite—poly (lactide-co-glycolide) nanocomposite for controlling osteosarcoma therapeutics.J Nanosci Nanotechnol. 2020; 20: 3994-4004https://doi.org/10.1166/jnn.2020.17689
- Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release.New J Chem. 2018; 42: 6283-6292https://doi.org/10.1039/c7nj04706a
- Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers.Colloid Surface A. 2021; 617126142https://doi.org/10.1016/j.colsurfa.2021.126142
- Intrinsically Mn2+-chelated polydopamine nanoparticles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells.ACS Appl Mater Interfaces. 2015; 7: 16946-16952https://doi.org/10.1021/acsami.5b06265
- Carrier-drug” layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy.Nanoscale. 2022; https://doi.org/10.1039/D2NR03200G
Y. Shaked, The pro-tumorigenic host response to cancer therapies, 19(2019) 667-685, doi:10.1038/s41568-019-0209-6.
- A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine.J Mater Chem B. 2020; 8: 9589-9600https://doi.org/10.1039/d0tb01603a
- Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles.Chem. 2019; 5: 2171-2182https://doi.org/10.1016/j.chempr.2019.06.003
- Human cardiac organoids for disease modeling.Clin Pharmacol Ther. 2018; 105: 79-85https://doi.org/10.1002/cpt.1286
- Applications of bioengineered 3D tissue and tumor organoids in drug development and precision medicine: current and future.BioDrugs. 2018; 32: 53-68https://doi.org/10.1007/s40259-017-0258-x
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy